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Abstract. Lineshapes in x-ray core-level photoemission (XPS) reflect the local electronic
environment of the atomic species from which they originate, and the excitations of the material
system which reduce the emerging photoelectron’s kinetic energy. For metallic systems, we show
that detailed analysis of such lineshapes provides important information on the local conduction
band electronic structure at distinct sites of the same atomic species. A form is derived for
the core-level lineshape which is based on the spectrum of excitations in the conduction band,
predominantly the formation of electron–hole pairs which screen the core-level hole produced
in XPS; this is more general (but less rigorous) than the Doniach–Sunjic formulation. The
lineshape is used as the basis for a numerical data analysis package—SHAPER—which extracts
lineshape information from experimental XPS data by least-squares fitting. Various lineshapes
derived from hypothetical conduction band profiles, and the reliability of the fitting process, are
examined.

1. Introduction

Photoelectron spectroscopy is a key tool in solid state physics and chemistry, x-ray
photoemission (XPS) giving information on tightly bound core electrons (and therefore
on local, chemically specific effects) and ultraviolet photoemission (UPS) on delocalized
band structure effects; these are often regarded as separate, if complementary, approaches
to electronic structure, but the study of core-level lineshapes in XPS can also provide
information on the conduction band electronic structure of metallic systems, as discussed
here.

In a simple, single-particle view of XPS, the core electron, with initial binding energy
Eb, is excited by a photon of energyEph to a level above the vacuum level, and leaves the
solid with a measured kinetic energy given by

EKE = Eph − Ewf − Eb. (1)

Eph and the work functionEwf thus determineEb, and the XPS spectrum consists of a series
of characteristic lines superimposed on a background of inelastically scattered electrons from
less tightly bound levels; the line energies identify the chemical species present (and can give
their relative concentrations), but the spectrum analysis rarely proceeds further. However,
the detailed lineshapes, and their dependences on more complex processes related to the
electronic structure and the local atomic environment, can provide much more information,
as will be shown in what follows.

Electron–electron interactions require that the(N + 1)-electron initial andN -electron
final states of the whole system be considered explicitly; the energy balance then becomes

EKE = Eph + Einitial state − Ef inal state − Ewf . (2)
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The apparent binding energy of the photoelectron is thenEinitial state − Ef inal state,
corresponding to the one-electron picture’sEb only when the transition is slow, an unrealistic
assumption for XPS. The system is usually initially in its ground state, largely determining
EKE ; but theN -electron system left behind may be in a spread of possible excited final
states, producing a corresponding spread inEKE . Discrete excitations of the final state
produce an XPS core-level line with discrete satellite peaks to higher apparent binding
energy—shake-up, or multiplet structure [1–3]; but for a continuum of final state excitations,
such as within the conduction band of a metal, the line develops a tail to higher binding
energy, and appears asymmetrical.

Mahan set out the theory of this photoemission lineshape (and absorption and emission
spectra) for the alkali metals many years ago [4] but much current analysis of XPS core-level
data is still somewhat semi-empirical [5]. The theoretical lineshape derived from Mahan’s
work by Doniach and Sunjic [6] (DS) apply strictly only for near-peak behaviour, but has
often been used inappropriately because it provides a simple model for experimental data on
metals. Following Wertheim and others [7] a more widely applicable model is developed
here, accounting in greater detail for the range of possible final state excitations in the
conduction band. This model is then used as the basis for an iterative fitting procedure for
experimental data, implemented as a computer package—SHAPER—which is applied to
the analysis from experimental data from the layered compound 2H-TaS2 and some of its
intercalates, and to 1T- and 4Hb-TaS2, in the following papers [8].

2. Theoretical background

2.1. A model for core-level photoemission lineshapes

When a core-level photohole is suddenly created in a metal, the conduction electrons move
to screen its localized potential [6, 9] creating an electron–hole pair (or pairs) with a range
of energies, and reducing the kinetic energy of the photoelectron. For one excitation(µ̄ν),
in which an electron is excited from stateµ (of energyεµ) to stateν (of energyεν) with
probability 32/ε2

µν (whereεµν = εν − εµ and 3 is the appropriate matrix element), the
probability density function (PDF) ofE, the energy lost by the photoelectron, is [7, 10]

Pµν(E) = (32/ε2
µν)δ(E − εµν) + (1 − 32/ε2

µν)δ(E). (3)

For multiple excitations, the individual PDFs must be convolved, and, for small32

Ptot (E) ∝
∫ ∞

−∞
e−iEt exp

( ∑
µν

32(eiεµν t − 1)

ε2
µν

)
dt (4)

is the PDF of the total lossE arising from electron–hole pair formation in the final state.
The double sum overµ andν is over all hole states below, and all electron states above,
the Fermi energy(EF ); only the energy of the excitation depends on the indicesµ andν,
so equation (4) can be rewritten as a single sum over all possible excitations, and since the
conduction band is quasi-continuous, the sum can be replaced by an integration over all
excitations of energyE′:

Ptot (E) ∝
∫ ∞

−∞
e−iEt exp

( ∫ ∞

0
J (E′)

(eiE′t − 1)

E′2 dE′
)

dt. (5)

(In many of the equations that follow, a function of energy is expressed as an integral of
other functions of energy over a particular range of energy, and the variablesE andE′ are
used essentially interchangeably as appropriate.) HereJ (E′) is proportional to the density
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of excitations of energyE′. Note thatPtot (E) depends only onJ (E′) for E′ < E, and
that the denominatorE′2 ensures that, providedJ (E′) increases no faster thanE′2, only the
low-energy part ofJ (E′) influences the lineshape.

The overall lineshapeI (E) can now be calculated by convolvingPtot (E) with a delta
function at E = E0, the kinetic energy of core electrons emerging without energy loss,
a Lorentzian lineshape to account for lifetime(λ−1) broadening of the final state, and a
Gaussian of widthσ to include instrumental and any phonon broadening [11–13]; these are
conveniently performed as multiplications in the Fourier (time) domain, giving

I (E) = A

∫ ∞

−∞
e−iEte−iE0te−λ|t | exp

(
−σ 2t2

2

)
exp

( ∫ ∞

0
J (E′)

(eiE′t − 1)

E′2 dE′
)

dt (6)

where A is a simple multiplier determining the total intensity, and is varied as a fitting
parameter (see below).J (E′) is determined byD(E), the single-electron density of states
(DOS) above and belowEF (though it should also be borne in mind that the single-particle
density of states may be significantly modified locally in the presence of the photoexcited
core hole), and by other processes such as plasmon excitation; for the moment such other
processes are ignored, andJ (E′) is taken to be a joint density of states (JDOS):

J (E) = 32
∫ EF

EF −E

D(E′)D(E′ + E) dE′ = 32
∫ ∞

−∞
Df illed(E

′)Dempty(E
′ + E) dE′ (7)

where

Df illed(E
′) =

{
D(E′) if E′ 6 EF

0 if E′ > EF

Dempty(E
′) =

{
D(E′) if E′ > EF

0 if E′ 6 EF .

(8)

Here 32 is assumed the same for all excitations, effectively ignoring the symmetries of
the states involved, probably an appropriate approximation when the states nearEF are of
similar symmetry; if necessary,J (E) could be suitably weighted by some function32(E).
SoD(E) andEF determineJ (E) and hence the core-level lineshapeI (E), though detailed
structure inD(E) tends to become blurred by the convolutions involved. Nevertheless
D(E) influences the lineshape, as demonstrated below and as experimentally observed.

The DS lineshape [6] is a special case of equation (6). AssumingD(E) is approximately
constant nearEF for a near-free-electron metal, i.e.

D(EF + ε) = D(EF ) + εD′(EF ) + O(ε2) + · · · (9)

and using equation (7), for smallE′

J (E′) = 32D(EF )2E′ = αE′. (10)

So if only excitation energiesE′ much less than the width of the conduction band are
considered,D(E) can be taken to be approximately flat and infinitely wide, andJ (E′)
taken as proportional toE′. Since the shape ofI (E) for small E is determined byJ (E′)
for smallE′, the near-peak lineshape is therefore similar for all DOSs. Using equation (10),
equation (6) becomes

I (E) ∝
∫ ∞

−∞
e−iEte−iE0te−λ|t | exp

(
−σ 2t2

2

)
exp

(
α

∫ ∞

0

(eiE′t − 1)

E′ dE′
)

dt. (11)

Despite the irrelevance ofJ (E′) for largeE′ to I (E) for small E, the inner integral does
not converge, so the modelJ (E′) must be refined by introducing an artificial cut-off in the
JDOS atEc, much greater than the range ofE over whichI (E) is required:

J (E′) = αE′ for E′ < Ec J (E′) = 0 for E′ > Ec. (12)
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Then, forλ = σ = 0 (and0 the transcendental gamma function andγ Euler’s constant)

I (E) ∝ 2e−αγ sin(απ)0(1 − α)

Eα
c

E(α−1) (13)

—the power law derived by Nozières and de Dominicis [14] as the limiting behaviour of
the lineshape.α, the slope ofJ (E) at E = 0, is usually called the asymmetry index. The
lineshape has no characteristic width since its shape is the same on any scale. Note that
equation (13) holds only forE � Ec, a very restrictive limit [6] sinceEc even in alkali
metals is a few electron volts. Whenλ = 0, convergence requires that 0< α < 1, while
for non-zeroλ

I (E) ∝ 2e−αγ 0(1 − α)

Eα
c

cos(απ/2 − (1 − α) tan−1(E/λ))

(λ2 + E2)(1−α)/2
(14)

—the widely used DS lineshape, derived by Doniach and Sunjic [6] from a different
perspective. Figure 1 shows some example DS lineshapes for various values ofα; as the
asymmetry increases, the tail on the low-kinetic-energy side of the XPS line becomes more
pronounced, and the peak height is reduced. (For simplicity, in this and all later figures,
the energy scale has been left without units, but typical observed lineshapes correspond to
an energy of 1 eV per unit on the scale shown. In all the lineshape figures to follow, the
energy scale refers to kinetic energy relative toE0, and the Lorentzian and Gaussian widths
areλ−1 = 0.06 andσ = 0.3, typical of the values encountered experimentally in papers II
and III [8].)

Figure 1. Some typical DS lineshapes forα = 0.0 (——), 0.1 (- - - -) and 0.2 (· · · · · ·), and
with a Lorentzian widthλ−1 = 0.06 and Gaussian instrumental widthσ = 0.3. The horizontal
scale refers to photoelectron kinetic energy relative toE0, and the vertical axis is in arbitrary
units.

2.2. Secondary-electron backgrounds in XPS

So far, only energy losses comprising part of the primary lineshape, intrinsic local effects,
have been dealt with. But inelastic scattering of photoelectrons from shallower core levels
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or bands results in a secondary-electron background on which are superposed the core
lineshapes of interest, and for detailed lineshape analysis it is vital to account for this
background appropriately. For a primary (unscattered) spectrumj (E), the measured count
rateF(E) can be described by

F(E) = j (E) + B(E) = j (E) +
∫ ∞

E

K(E′ − E)j (E′) dE′ (15)

whereK(ε) gives the probability that a photoelectron loses energyε before detection [15–
17]. Shirley [18] suggested removingB(E) by taking it as proportional to the primary-
photoelectron count at all higher kinetic energies, i.e. by assumingK(ε) = K0 for ε > 0:

B(E) = K0

∫ ∞

E

j (E′) dE′. (16)

K0 is then adjusted until the background on the low-KE side of the peak matches the
measured flux.F(E) is used as a first approximation forj (E) in equation (16) and the
process iterated by calculatingB(E), subtracting fromF(E) and using the result as a
better approximation forj (E). Shirley’s procedure, though conveniently straightforward, is
unfortunately inappropriate for DS lineshapes, erroneously interpreting the asymmetric tail
as part of the secondary-electron background. A more realistic loss function would involve
the energy dependent dielectric function, but for metals, and for low energy losses at which
plasmon excitation is irrelevant, a good approximation forK(ε) is [19]

K(ε) = vε (17)

with v a constant, and this is used in all calculations here. Inelastic scattering of electrons
with much higher primary energy than the line of interest are accounted for with a linear
baseline, and equation (15) becomes

F(E) = j (E) + B(E) = j (E) + χ − ζE + v

∫ ∞

E

(E′ − E)j (E′) dE′. (18)

This information leads to more involved calculations, but gives a more realistic background;
χ , ζ andv are varied during the fitting process described in the following section.

3. Analysis of XPS data by least-squares fitting

3.1. An overview of the SHAPER package

An XPS lineshape data analysis package must derive a model lineshape using a set of
relevant parameters, and iterate these (subject to suitable constraints) to minimize the
difference (usually the sum of the squared residuals—the difference between the model
and data at each energy) between the model and experiment. Many algorithms and library
subroutines offer least-squares minimization, fitting data to any model function; but none
handle the complexity of the problem addressed here, with the observed lineshape related
only indirectly to the model function(s) of interest, with the computational efficiency
required. So a photoemission data-analysis package, SHAPER, has been developed for
analysing XPS data with resolution and signal-to-noise ratio sufficiently good to differentiate
between lineshapes derived from different conduction band structures; it allows fitting to a
range of possible DOS and JDOS functions, offering a more comprehensive approach than
hitherto available.
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SHAPER involves the iterative minimization of a ‘goodness-of-fit parameter’ defined
as

ρ(ξ1, ξ2, ξ3, . . . , ξµ) =
n∑

i=1

(di − θ(Ei, ξ1, ξ2, ξ3, . . . , ξµ))2

η2
i

(19)

where di is the number of photoelectrons counted at energyEi and n is the number of
experimental points.ηi is an estimate of the standard deviation ofdi , andµ is the number
of parameters,ξj , of the model lineshape which has the valueθ(Ei, ξ1, ξ2, ξ3, . . . , ξµ) at
energyEi . ρ is iteratively minimized with respect to parametersξj , to obtain the most
probable set, but because there may be local minima forρ, the fitting process must begin in
a region of theµ-dimensional parameter space sufficiently close to the absolute minimum
of ρ; i.e., the parameters must initially be adjusted manually to fairly close to those of the
best-fit model. The parametersξj are those determining lineshape itself (λ andσ , and the
β parameters; see below),A determining its overall strength,E0 determining its position,
andχ , ζ andv determining the background. To avoid wild excursions in the minimization
process, limiting bounds can also be imposed on the variation of particular parameters. In
cases in which several lines are simultaneously fitted, as for multiplet structures such as
those addressed in papers II and III, corresponding parameters for different components of
the multiplet can also be constrained to be equal.

3.2. A numerical implementation of the lineshape model

SHAPER requires a method reliably and quickly calculatingI (E) from J (E) and other
parameters using a numerical implementation of equation (6).J (E) is the key to the
lineshape, but closed form solutions forI (E) are possible only for very simple forms of
J (E), and then only for smallE. Fortunately equation (6) is readily amenable to numerical
methods, particularly fast Fourier transforms (FFTs), and SHAPER findsI (E) whenJ (E)

is

(i) specified algebraically;
(ii) obtained by convolution from an algebraic modelD(E), together with a value for

EF .

Table 1 gives the functional forms forJ (E) programmed as options in SHAPER. (These
were all designed to fit real data, so are often more complicated than required to produce
the sample lineshapes of subsection 3.3 below; the numbering scheme and the ordering
of parametersβj reflect this.) There are two conditions onJ (E): (i) J (0) = 0 (see
equation (7); optd= 4 violates this, butJ (0) � 1 if β1 � β2); (ii) J (E) → 0 asE → ∞
so that the integrals in equation (6) converge. Both apply for all the values of the parameters
βj permitted in the fitting process.β1–β5 are named according to their effects onJ (E);
e.g., for optd= 7, β1 is the ‘cut-off position’ andβ2 the ‘cut-off sharpness’. Other names
can be obviously identified with their corresponding parameters, and are used in SHAPER’s
output. As examples, figure 2 showsJ (E) for two different models specified in the caption;
the peak was introduced for optd= 8 to represent extrinsic plasmon losses in the lineshape
of 2H-TaS2—see paper II [8]—and thenJ (E) should properly be referred to as the joint
density of excitations rather than the JDOS.

Table 2 gives the functional forms forD(E) programmed in SHAPER, and one of these
is plotted in figure 3(a) for optd= 3 and some typical parameter values for two values of
EF . WhenJ (E) is determined fromD(E), there is a complication becauseD(EF ) depends
on the parameters,βj , that specifyD(E); the slope ofJ (E) at E = 0 is not independent of
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Table 1. The functional forms used forJ (E) in SHAPER. α is dimensionless, and the
other parameters have dimensions of energy except for the sharpness parameterβ2 which has
dimensions of inverse energy.

Functional form ofJ (E) Description optd

αE exp(−E/β1) A straight line at the origin
which falls away slowly, reaching
its maximum atβ1 (implemented
as a special case of optd= 4) ↓

αE exp(−E/β4) + αβ3 exp(−(E − β1)
2/2β2

2) As above but with a Gaussian
peak added at positionβ1 with
width parameterβ2 and heightβ3 4

αE exp(−E/β4) + αEβ3 exp(−(E − β1)
2/2β2

2) As optd= 4 but with E

multiplying the Gaussian to
force it to zero atE = 0 6

αE
2 (1 − tanh(β2(E − β1))) A straight line until reaching

a smooth cut-off atβ1,
sharpnessβ2 7

αE
2 (1 − tanh(β2(E − β1))) + β5αE exp(−(E − β3)

2/2β2
4) As optd= 7 but with a

Gaussian peak added 8

Figure 2. Some examples of the model JDOS functionsJ (E) used in SHAPER with parameters
as follows:

optd α β1 β2 β3 β4 β5

—— 8 1.0 1.75 1.5 — — 0
- - - - 8 0.8 1.75 1.5 0.7 0.1 1

these parameters and thusα cannot itself be specified as is the case whenJ (E) is specified
directly (equation (10)). Instead,α is retained as a scaling factor forJ (E) in cases when
D(E) is used for fitting, and the value obtained cannot be directly compared withα from
fitting using a specificJ (E). For the examples in figure 3,D(EF ) ≈ 1, so withα = 1, the



1428 H P Hughes and J A Scarfe

Table 2. The functional forms used forD(E) in SHAPER.

Functional form ofD(E) Description optd

exp(−E2 ln 2/β2
1) A single Gaussian peak of half width

β1 at half maximum, withEF = β2 1
exp(−E2 ln 2/β2

1) + β3 exp(−(E − β4)
24 ln 2/β2

2) A pair of Gaussians of half widthsβ1

andβ2, height ratioβ3, separationβ4 2
tanh(β1E) − tanh(β1(E − β2))

2
A ‘top hat’ function with sides of

steepnessβ1 and with overall widthβ2 3

initial slope of J ′(0) is ≈ 1 close toα; but whenD(EF ) 6≈ 1 this is no longer the case,
and the derivedJ (E) must be inspected to obtain the asymmetry parameter from the initial
slope.

Even relatively simple model DOSs, like those in figure 3(a), give algebraically
complicated JDOSs after applying equation (7), and new models can be introduced only at
considerable cost in programming and execution times. The models have therefore been
kept as flexible as possible, and an explicitJ (E) has been used where this can be done
with acceptable realism; the advantages of doing so will be explored in subsection 3.4.

3.3. Some example lineshapes from the SHAPER package

Lineshapes derived from some of the models are illustrated in figures 4–8; each figure shows
the theoretical lineshapeI (E) expected for the JDOS in the inset panel. In each case the
vertical scale forI (E) is arbitrary, and no background has been included.

Figure 4 shows the lineshape for various values ofα(= J ′(0)) for a linear JDOS that
cuts off exponentially to zero atE = +3. It is identical to the DS lineshape for as far in
energy below zero as the JDOS remains linear, and, as for the simplistic DS JDOS, the peak
height is strongly dependent onα. The asymmetric tail has a shoulder, corresponding to the
JDOS cut-off, atE = −3; this is less marked for lower values ofα and could easily be lost
in any inelastic background (not included here) and only be apparent when the lineshape is
fitted computationally. Just perceptible is the movement of the peak maximum to lower KE
asα increases. Figure 5 varies the cut-off energy, and the shoulder shifts accordingly; note
that even thoughJ (E) for the two highest cut-off positions is identical up toE = 5, the
extra transitions available at higher energy shift weight to lower KE and cause the observed
peak heights to differ.

Figure 6 superposes a Gaussian peak of specified height, width and position(β3) on
J (E) (optd = 8); such a JDOS is unlikely to result from a real DOS, but this form is
essential to include extrinsic excitations other than electron–hole pairs, such as plasmon
losses. The example is exaggerated to demonstrate how pronounced the peak inJ (E) must
be to give a satellite in the photoemission lineshape. The line forβ3 = 1 also shows a
weak feature atE = −2 corresponding to a double excitation; such multiple excitations are
automatically incorporated by SHAPER, but are very weak effects.

When SHAPER generatesJ (E) algebraically as a convolution ofD(E) (for a particular
EF ), the slope ofJ (E) at E = 0 is not determined by a single parameter (α) as is the case
whenJ (E) is itself specified, but is derived from those which determineD(E); D(E) and
J (E) must therefore be examined graphically for comparison with other results obtained
using algebraically specifiedJ (E)s as discussed above. It is also not possible to invert
the convolution to deriveD(E) from J (E), as many different models for the DOS could
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Figure 3. (a) An example of the model DOS functionsD(E) used by SHAPER, with optd= 3,
β1 = 2 and β2 = 3. —— and - - - - representEF = 1 and 1.5 respectively. (b) The
corresponding functionsJ (E).

produce closely similar JDOSs. Figure 7 uses aJ (E) calculated from a DOSD(E) which
has Gaussian form centred onE = 0 (optd= 1), with HWHM β1 = 6 andEF (i.e. β2) = 0.
The correspondingJ (E) is linear atE = 0 and smoothly falls away, so the lineshape is
of the DS form close to the peak, falling away to zero at an energy of the order of the
width of the DOS and with no sharp features. The curves show the effect on the lineshape
of varying the height of the Gaussian such that the resulting initial slope ofJ (E) (i.e. α)
varies. Figure 8 shiftsEF (a parameter that, as will be seen in paper II, is experimentally
adjustable in intercalated materials), changing the occupation of the conduction band while
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Figure 4. The effect on the lineshape, generated using optd= 7, of changing the asymmetry
parameterα, determined by the slope of the JDOSJ (E) at the origin (see the inset).E is
the kinetic energy shift from the ‘true’ line energyE0, and for these curves the cut-off energy
β1 = 3, the cut-off sharpnessβ2 = 1.5, andα is 0.1 (——), 0.3 (- - - -) or 0.5 (· · · · · ·).

Figure 5. The effect on the lineshape, generated using optd= 7, of changing the energy of the
cut-off in the JDOS (shown in the inset). Hereα = 0.40 and the cut-off sharpnessβ2 = 1.50
for all the curves, and the cut-off energies areβ1 = 1.00 (——), 3.0 (- - - -) and 5.0 (· · · · · ·).

the DOS remains fixed; note how the lineshape changes markedly even for small shifts in
EF .

These calculated lineshapes show several clear trends: (i) increasing the slope ofJ (E)

at E = 0 increases the asymmetry close to the peak; (ii) sharp features inJ (E) appear in the
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Figure 6. The effect on the lineshape of introducing an additional peak structure in the effective
JDOS as for optd= 8. Hereα = 0.40, the cut-off sharpnessβ2 = 1.50, the cut-off energy
β1 = 3.0, the peak widthβ4 = 0.1 and the peak-to-slope ratioβ5 = 2.0 for all the curves; the
peak positions areβ3 = 1.00 (——), 2.0 (- - - -) and 3.0 (· · · · · ·).

Figure 7. Here J (E) is calculated from a DOSD(E) which has Gaussian form centred on
E = 0 (optd= 1), with HWHM β1 = 6 andEF (i.e. β2) = 0. The curves show the effect of
varying the height of the Gaussian such thatJ ′(0) (i.e. α) varies: α = 0.1 (——), 0.3 (- - - -)
and 0.5 (· · · · · ·).

lineshape,I (E), but considerably smoothed—peaks inJ (E), unless very narrow, appear
as shoulders in the lineshape; (iii) theJ (E) functions (and the corresponding lineshapes)
calculated from explicitD(E) functions are generally very similar to those which can be
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Figure 8. As for figure 7, but hereEF is varied whileα is fixed at 0.40 by fixing the Gaussian
peak height.EF = 0.0 (——), 1.0 (- - - -) and 2.0 (· · · · · ·). As EF increases, the DOS atEF

falls because of the Gaussian profile of the DOS, and so therefore do the initial slope ofJ (E)

and the effective asymmetry.

specified directly in SHAPER. A comparison of theJ (E) models generated in figures 7 and
8 with the explicit, arbitraryJ (E) models of figure 4–6 reveals that the explicit models do
indeed successfully simulate theJ (E) derived from a variety of differentD(E) functions.
Figures 7 and 8 should therefore not be viewed as a wholly distinct method of calculating
the lineshapes, but rather as an extension of the previous set, demonstrating how the changes
in J (E) might be related to changes inD(E).

3.4. Some example fits from the SHAPER package

SHAPER’s reliability was tested using data artificially generated with specified lineshape
parameters with random noise added. SHAPER’s output parameters should of course be the
same, with appropriate error bounds, as those used to generate the data, and not be overly
sensitive to the initial estimate of parameters. The error bounds should also correspond to
those observed by ‘Monte Carlo simulations’ [20], which indicate how accurately the final
parameter set has been determined. Further, when attempting to fit data generated from one
algebraic form ofJ (E) with a model lineshape derived from a differentJ (E), the model
should be rejected as unsuitable unless theJ (E) returned by the fit is, over a wide range
of E, almost identical to that used for generating the lineshape.

First, two lineshapes (lines A and B, shown in figure 9) were generated using respectively
optd = 7 (table 1) as in figures 4 and 5, and optd= 1 (table 2) as in figures 7 and 8. A
and B were then used to produce 20 ‘real’ spectra (datasets A and B) by adding random
numbers with a Gaussian distribution (mean, zero; standard deviation,

√
100+ N , where

N is the number of counts at the relevant energy in the original lineshape) to simulate
noise. Constant backgrounds were included to allow noisy ‘data’ to dip below the base
line of the peak without becoming negative. Dataset A′ was generated from lineshape A
with ‘worse’ noise of standard deviation

√
900+ N . These datasets were then fitted with a
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Figure 9. The original lineshapes from which the test data were derived. (a) Line A is based
on a linearJ (E) with a cut-off atE = −3.0, a cut-off sharpness of 3.0, and withα = 0.20. (b)
Line B is based on a GaussianD(E) with half width 5.0 andEF offset by 1 energy unit from
the peak maximum (- - - -); this produces aJ (E) with an initial slope (i.e.α) of 0.5.

variety of lineshapes based on several different models forJ (E) andD(E), some of them
using different algebraic forms from those used for the original lines, producing in each
case 20 results for the various fitting parameters involved; these 20 results thus provided
estimates of the standard deviations of the fitting parameters as well as their means, and
thus a measure of the reliability of the fitting process.

An example of fitting a line from dataset A using aJ (E) with the same mathematical
form as used to generate line A, i.e. optd= 7, is shown in table 3, which lists the original
values used to generate line A, the starting estimates and bounds for the fitting parameters
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and the final values produced from SHAPER. The initial estimates of the parameters are very
different from the original values, but the fitted parameters are very close to the original set.
The reliability of such a fit is characterized by examining the results for fits to all 20 lines of
dataset A which are summarized in table 4, which shows the means and standard deviations
of the 20ρ-values obtained, and of the 20 results returned forα, β1 andβ2, together with
the original parameters. The quality of fit is also represented graphically in figure 10 by
comparing the originalJ (E) with an average of the 20J (E)s returned from the output
parameters from SHAPER. The dashed lines indicate±one standard deviation (obtained
from the 20 values ofJ (E) at any particular point), and the dotted lines the most extreme
J (E) obtained.α (the slope ofJ (E) at the origin) and the cut-off energy are determined
very precisely, though the sharpness of the cut-off is less precisely retrieved becauseJ (E)

is less sensitive to this parameter. The mean fittedJ (E) coincides with the original.

Figure 10. Results of fits of dataset A with a modelJ (E) of the same form as used to generate
line A (optd= 7). The original (——) and the mean of the fitted (——)J (E)s coincide almost
exactly and can barely be distinguished in the figure; the spread in the fittedJ (E)s is represented
by the dashed lines (- - - -), and the extreme curves by the dotted lines (· · · · · ·).

The anticipated distribution (χ2
ν ) of ρ is characterized byν = N − µ (whereµ is the

number of free parameters in the fit (= 8 for optd = 7) and N (= 500) is the number
of data points) and is approximately normal for largeν, with meanν and variance 2ν,
suggesting an expectation value of 492± 31/

√
20 for ρ for each fit; the fit corresponding

to figure 10 gives 489.7 ± 28.8/
√

20, well within the expected range.ρ is very sensitive
to the weighing factorsη2

i , being inversely proportional to any overall error, so ifη2
i were

consistently overestimated by 5%, the expectation value ofρ would be reduced by 5%,
from about 490 to about 470. The reliability with whichρ can be used as a goodness-of-fit
parameter thus depends on accurate estimates of the noise level. Because the artificially
generated data have a specified noise level,ρ adheres closely to the expectedχ2

ν distribution,
but such precision cannot be expected when dealing with experimental data where the noise
level is not so well determined. Several different initial estimates of the parameters were
also made; the results are not shown here, but SHAPER returned essentially the same
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Table 3. The parameters used to generate the artificial data, line A, using optd= 7 (first
column), and the values returned by SHAPER after fitting the artificial data with a lineshape of
the same form as optd= 7 (final column). The middle three columns show the values input to
SHAPER as starting points for the fitting process, and the upper and lower bounds constraining
the process against wild excursions. Several decimal places are shown for the final values to
emphasize that, though very close, they are not exactly the same as the originals.

Original Lower Upper Starting Final
value bound bound value value

Background level 100 0 8000 1000 101.0
Amplitude (a simple scaling factor) 300 0 12 000 300 297.8
Position (E0) 0.00 −1.000 1.000 0.100 −0.001
Lorentzian width (λ−1) 0.06 0.01 0.12 0.02 0.054
Gaussian width (σ ) 0.30 0.10 0.60 0.50 0.307
α 0.20 0.05 0.60 0.30 0.199
Cut-off position (β1) 3.00 1.0 6.0 2.0 2.976
Cut-off sharpness (β2) 3.00 0.5 5.0 1.0 3.027

Table 4. A summary of the original values for various relevant lineshape parameters used to
generate lines A and B, and the mean values and standard deviations returned by SHAPER
from fitting the corresponding 20 noisy datasets; also shown are the goodness-of-fit parameters
ρ for each fitting process. The fits are represented graphically in figures 10–12. The figures in
brackets are the values returned from fitting the noisier dataset A′ based on line A.

Original Mean Standard
Parameter value fitted value deviation

Figure 10 ρ — 489.7 28.8
Dataset A (A′) optd 7 7 —

α 0.200 0.200 (0.201) 0.001 (0.003)
Cut-off (β1) 3.000 2.995 (3.001) 0.015 (0.035)
Cut-off (β2) sharpness 3.000 2.979 (3.072) 0.292 (0.547)

Figure 11 ρ — 2168.2 96.3
Dataset A optd 7 6 —

α 0.200 0.263 0.002

Figure 12 ρ — 495.4 40.1
Dataset B optd 1 1 —

α 0.500 0.531 0.114
Peak half width (β1) 5.000 4.937 0.253
EF (β2) 1.000 0.857 0.573

parameter set in each case.
Table 4 also summarizes the results of fitting dataset A′ with optd= 7, and it can be seen

thatα, β1 andβ2 are recovered satisfactorily, though, as would be expected, with somewhat
larger standard deviations; this is particularly noticeable forβ2, to which the lineshape is
least sensitive. The graphical representation corresponding to figure 10 is not shown, but
has exactly the same form but with somewhat larger spreads as would be expected. The
results of fitting dataset A usingJ (E) = Ee−E/β4 (optd = 6 with β3 = 0) as a model
fit are shown in table 4 and figure 11, demonstrating the poor fit when the modelJ (E)

cannot reproduce the original JDOS. Despite the high values ofρ, the results are quite
self-consistent, all theJ (E) curves lying in a narrow band and the fitted parameters having
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low variances; note also that the fittedJ (E) is quite close to the original nearE = 0, which
dominates the lineshape, but such a fit, withρ = 2168 (more than four times the expected
value), would properly be rejected.

Figure 11. Results of fits of dataset A with an inappropriate modelJ (E) (∼ E exp(−E)) of
different form from that used to generate line A (optd= 7). The originalJ (E) (——) is not
well fitted by theJ (E) (——) derived from SHAPER.

Table 4 and figure 12 similarly summarize the results of fitting dataset B using the
same model for fitting as for generating the data (optd= 1, a GaussianD(E), with EF

displaced from the centre of the peak), with all the parameters free to vary. The mean and
standard deviation ofρ are as expected, but, while the peak width is consistently close to
the original,EF and α are wildly scattered and raise doubts about the overall validity of
the fits. Figure 12 confirms this, showing that whereas the meanJ (E) matches the original
very closely (hence the expectedρ-values), the fittedD(E) fluctuates widely. The problem
here is one of uniqueness—an increase in the overall height of the DOS, accompanied by an
appropriate shift ofEF away from the peak, can leaveD(EF ) unchanged with little effect
at the lower end ofJ (E) where the fitting is most effective; if differentD(E) functions
produce the same (or very similar)J (E) functions, SHAPER cannot readily distinguish
them. So obtainingρ-values close to those statistically expected is not in itself confirmation
that a good, physically reasonable fit has been achieved when the fitting is carried out using
convolution ofD(E) rather than a directly modelledJ (E). Overall, whereas dataset A is
fitted well by the model JDOS used to generate it and not by others, dataset B is much less
sensitive to the model DOS; it can also be concluded that the sharper features of the JDOS
are more reliably predicted with SHAPER, as might be expected.

4. Conclusion

Given the ‘correct’ model forJ (E) SHAPER is capable of returning a best-fit set of
parameters that is accurate and reliable, and independent of the starting parameter estimates.
With the ‘wrong’ model forJ (E), SHAPER returns high (poor) values forρ; however, since
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Figure 12. Results of fits to dataset B using optd= 1, the same GaussianD(E) as used to
generate the noisy data. The original (——) and mean (——) of the fitted forms ofD(E) are in
fair but not close agreement over the range plotted, with spreads in the fitted results represented
by the dashed and dotted lines as for figures 10 and 11 (a). The vertical lines represent the
original value ofEF (——), and the mean (——) and standard deviations (- - - -) of the fitted
values. The fittedJ (E)s (——) however agree quite accurately with theJ (E) (——) derived
from the originalD(E) (b).

the lineshape depends on the values ofJ (E) rather than its algebraic form, the shape of
J (E) returned must be examined, rather than just the output parameters, since different
algebraic representations of the JDOS can, with suitable parameter values, give the same
shape toJ (E). The determination ofD(E) is much less reliable than that ofJ (E) because a
range ofD(E) models can give very similarJ (E) functions; the generation of the lineshape
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from D(E) is helpful only when most of the parameters are fixed, for example when the
shape ofD(E) is known andEF is required. With these limitations clearly in mind, and
the fact that the process must be interactive, SHAPER can be applied to data obtained from
real, and complicated, physical systems [8].
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