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Abstract. Lineshapes in x-ray core-level photoemission (XPS) reflect the local electronic
environment of the atomic species from which they originate, and the excitations of the material
system which reduce the emerging photoelectron’s kinetic energy. For metallic systems, we show
that detailed analysis of such lineshapes provides important information on the local conduction
band electronic structure at distinct sites of the same atomic species. A form is derived for
the core-level lineshape which is based on the spectrum of excitations in the conduction band,
predominantly the formation of electron—hole pairs which screen the core-level hole produced
in XPS; this is more general (but less rigorous) than the Doniach—Sunijic formulation. The
lineshape is used as the basis for a numerical data analysis package—SHAPER—which extracts
lineshape information from experimental XPS data by least-squares fitting. Various lineshapes
derived from hypothetical conduction band profiles, and the reliability of the fitting process, are
examined.

1. Introduction

Photoelectron spectroscopy is a key tool in solid state physics and chemistry, x-ray
photoemission (XPS) giving information on tightly bound core electrons (and therefore
on local, chemically specific effects) and ultraviolet photoemission (UPS) on delocalized
band structure effects; these are often regarded as separate, if complementary, approaches
to electronic structure, but the study of core-level lineshapes in XPS can also provide
information on the conduction band electronic structure of metallic systems, as discussed
here.

In a simple, single-particle view of XPS, the core electron, with initial binding energy
Ey, is excited by a photon of energy,; to a level above the vacuum level, and leaves the
solid with a measured kinetic energy given by

Exg = Eph - wa — Ep. (1)

E,, and the work functiorE,, s thus determine,, and the XPS spectrum consists of a series
of characteristic lines superimposed on a background of inelastically scattered electrons from
less tightly bound levels; the line energies identify the chemical species present (and can give
their relative concentrations), but the spectrum analysis rarely proceeds further. However,
the detailed lineshapes, and their dependences on more complex processes related to the
electronic structure and the local atomic environment, can provide much more information,
as will be shown in what follows.

Electron—electron interactions require that (i + 1)-electron initial andN-electron
final states of the whole system be considered explicitly; the energy balance then becomes

EKE = Eph + Einitiul state — Efinal state — wa (2)
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The apparent binding energy of the photoelectron is t#hia stare — Efinal stater
corresponding to the one-electron picturg;sonly when the transition is slow, an unrealistic
assumption for XPS. The system is usually initially in its ground state, largely determining
Exg; but the N-electron system left behind may be in a spread of possible excited final
states, producing a corresponding spreactje. Discrete excitations of the final state
produce an XPS core-level line with discrete satellite peaks to higher apparent binding
energy—shake-up, or multiplet structure [1-3]; but for a continuum of final state excitations,
such as within the conduction band of a metal, the line develops a tail to higher binding
energy, and appears asymmetrical.

Mahan set out the theory of this photoemission lineshape (and absorption and emission
spectra) for the alkali metals many years ago [4] but much current analysis of XPS core-level
data is still somewhat semi-empirical [5]. The theoretical lineshape derived from Mahan'’s
work by Doniach and Sunjic [6] (DS) apply strictly only for near-peak behaviour, but has
often been used inappropriately because it provides a simple model for experimental data on
metals. Following Wertheim and others [7] a more widely applicable model is developed
here, accounting in greater detail for the range of possible final state excitations in the
conduction band. This model is then used as the basis for an iterative fitting procedure for
experimental data, implemented as a computer package—SHAPER—which is applied to
the analysis from experimental data from the layered compound 2h-dab some of its
intercalates, and to 1T- and 4Hb-Ta$ the following papers [8].

2. Theoretical background

2.1. A model for core-level photoemission lineshapes

When a core-level photohole is suddenly created in a metal, the conduction electrons move
to screen its localized potential [6, 9] creating an electron—hole pair (or pairs) with a range
of energies, and reducing the kinetic energy of the photoelectron. For one excijatinn

in which an electron is excited from state (of energye,) to statev (of energye,) with
probability Az/sfw (wheree,, = ¢, — ¢, and A is the appropriate matrix element), the
probability density function (PDF) of/, the energy lost by the photoelectron, is [7, 10]

P (E) = (N?/e} )S(E — &) + (L= A%/} )3 (E). €
For multiple excitations, the individual PDFs must be convolved, and, for safall
o A2(demt — 1
P (E) / g 't exp<z A -1 5 )> dr (4)
&
—o© Hv 224

is the PDF of the total los& arising from electron—hole pair formation in the final state.
The double sum over andv is over all hole states below, and all electron states above,
the Fermi energyEr); only the energy of the excitation depends on the indjcesnd v,

S0 equation (4) can be rewritten as a single sum over all possible excitations, and since the
conduction band is quasi-continuous, the sum can be replaced by an integration over all
excitations of energy’:

00 ) \E't __
P (E) / e 'F! exp( / J(E/)(éizl) dE/> dr. (5)
oo 0 E’

(In many of the equations that follow, a function of energy is expressed as an integral of
other functions of energy over a particular range of energy, and the variBlbdesl £’ are
used essentially interchangeably as appropriate.) HeE8) is proportional to the density



Lineshapes in XPS from metals | 1423

of excitations of energy’. Note thatP,, (E) depends only o/ (E’) for E' < E, and
that the denominatoE’? ensures that, providedi(E’) increases no faster thai?, only the
low-energy part of/ (E’) influences the lineshape.

The overall lineshapé (E) can now be calculated by convolvirng,, (E) with a delta
function at E = Eq, the kinetic energy of core electrons emerging without energy loss,
a Lorentzian lineshape to account for lifetinie™!) broadening of the final state, and a
Gaussian of widtly to include instrumental and any phonon broadening [11-13]; these are
conveniently performed as multiplications in the Fourier (time) domain, giving

0o ) 2.2 00 JE't _ 1
I(E) = A/ g 'ElgEol g Ml exp o exp / J(E/)M dE’ |dt (6)
N 2 0 E”?
where A is a simple multiplier determining the total intensity, and is varied as a fitting
parameter (see below)/(E’) is determined byD(E), the single-electron density of states
(DOS) above and below  (though it should also be borne in mind that the single-particle
density of states may be significantly modified locally in the presence of the photoexcited
core hole), and by other processes such as plasmon excitation; for the moment such other
processes are ignored, afidE’) is taken to be a joint density of states (JDOS):

EF o0
J(E) = A? / D(E"\D(E' + E)dE' = A? f Ditiea(E"YDompiy(E' + E) dE’ (7

Er—FE 00

where
D(E") if £/ < Ep
0 if £/ > Ep

D(E)) if £/> Ep
0 if "< Ep.
(8)

Here A? is assumed the same for all excitations, effectively ignoring the symmetries of
the states involved, probably an appropriate approximation when the stateg neae of
similar symmetry; if necessary,(E) could be suitably weighted by some functioif(E).
So D(E) and Er determineJ (E) and hence the core-level lineshap&), though detailed
structure inD(E) tends to become blurred by the convolutions involved. Nevertheless
D(E) influences the lineshape, as demonstrated below and as experimentally observed.
The DS lineshape [6] is a special case of equation (6). Assuliiig) is approximately
constant neafEr for a near-free-electron metal, i.e.

Dfilled(E/) = { Dempty(E/) = {

D(Erp +¢&) = D(Ep) +&D'(Ep) + O(®) + - -- )
and using equation (7), for smal’
J(E') = A°D(Er)°E' = oE'. (10)

So if only excitation energieg’ much less than the width of the conduction band are
considered,D(E) can be taken to be approximately flat and infinitely wide, and&’)
taken as proportional t&’. Since the shape df(E) for small E is determined by/ (E")

for small E’, the near-peak lineshape is therefore similar for all DOSs. Using equation (10),
equation (6) becomes

oo ) 2.2 o (dE't _q

I(E) x / g 'ElgEo gl exp<—02t> exp(a/ % dE/> dr. (11)
—so 0

Despite the irrelevance of (E’) for large E’ to I(E) for small E, the inner integral does

not converge, so the modél E") must be refined by introducing an artificial cut-off in the
JDOS atE., much greater than the range Bfover which (E) is required:

J(E') =aE' for E' < E, J(E')=0for E' > E.. (12)
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Then, forh = o = 0 (andT" the transcendental gamma function gndtuler’'s constant)

2 sin(am)I'(1 — «) E@=D
E¢

—the power law derived by Nozies and de Dominicis [14] as the limiting behaviour of

the lineshapec, the slope of/(E) at E = 0, is usually called the asymmetry index. The

lineshape has no characteristic width since its shape is the same on any scale. Note that

equation (13) holds only foE « E., a very restrictive limit [6] sinceE. even in alkal

metals is a few electron volts. When= 0, convergence requires thatfo < 1, while
for non-zeroi

1(E) x

(13)

2e'T'(1— a) cofan/2 — (1 — o) tami(E/L))
Eg‘ ()\2 + E2)(17a)/2
—the widely used DS lineshape, derived by Doniach and Sunjic [6] from a different
perspective. Figure 1 shows some example DS lineshapes for various valupsothe
asymmetry increases, the tail on the low-kinetic-energy side of the XPS line becomes more
pronounced, and the peak height is reduced. (For simplicity, in this and all later figures,
the energy scale has been left without units, but typical observed lineshapes correspond to
an energy of 1 eV per unit on the scale shown. In all the lineshape figures to follow, the
energy scale refers to kinetic energy relativeEl and the Lorentzian and Gaussian widths
areA~! = 0.06 ando = 0.3, typical of the values encountered experimentally in papers Il
and Il [8].)

1(E)

(14)

I(E) N
(arb units)

Figure 1. Some typical DS lineshapes for= 0.0 (——), 0.1 ¢---)and 0.2 (----- ), and
with a Lorentzian widthh—% = 0.06 and Gaussian instrumental width= 0.3. The horizontal
scale refers to photoelectron kinetic energy relativeEgp and the vertical axis is in arbitrary
units.

2.2. Secondary-electron backgrounds in XPS

So far, only energy losses comprising part of the primary lineshape, intrinsic local effects,
have been dealt with. But inelastic scattering of photoelectrons from shallower core levels



Lineshapes in XPS from metals | 1425

or bands results in a secondary-electron background on which are superposed the core
lineshapes of interest, and for detailed lineshape analysis it is vital to account for this
background appropriately. For a primary (unscattered) specjrut), the measured count

rate F(E) can be described by

F(E)=j(E)+B(E)=j(E)+/ K(E'— E)j(E') dE' (15)
E

where K (¢) gives the probability that a photoelectron loses enerdpgfore detection [15—
17]. Shirley [18] suggested removing(E) by taking it as proportional to the primary-
photoelectron count at all higher kinetic energies, i.e. by assuiKi@tg = Ky for ¢ > O:

B(E) = Ko f b J(E)dE'. (16)
E

Ko is then adjusted until the background on the low-KE side of the peak matches the
measured flux. F(E) is used as a first approximation fgE) in equation (16) and the
process iterated by calculatin§(E), subtracting fromF(E) and using the result as a
better approximation foy (E). Shirley’s procedure, though conveniently straightforward, is
unfortunately inappropriate for DS lineshapes, erroneously interpreting the asymmetric tail
as part of the secondary-electron background. A more realistic loss function would involve
the energy dependent dielectric function, but for metals, and for low energy losses at which
plasmon excitation is irrelevant, a good approximationKae) is [19]

K(e) = ve a7)

with v a constant, and this is used in all calculations here. Inelastic scattering of electrons
with much higher primary energy than the line of interest are accounted for with a linear
baseline, and equation (15) becomes

F(E)=j(E)+B(E)=j(E)+X—§E+v/E (E'—E)j(ENdE". (18)

This information leads to more involved calculations, but gives a more realistic background;
X, ¢ andv are varied during the fitting process described in the following section.

3. Analysis of XPS data by least-squares fitting

3.1. An overview of the SHAPER package

An XPS lineshape data analysis package must derive a model lineshape using a set of
relevant parameters, and iterate these (subject to suitable constraints) to minimize the
difference (usually the sum of the squared residuals—the difference between the model
and data at each energy) between the model and experiment. Many algorithms and library
subroutines offer least-squares minimization, fitting data to any model function; but none
handle the complexity of the problem addressed here, with the observed lineshape related
only indirectly to the model function(s) of interest, with the computational efficiency
required. So a photoemission data-analysis package, SHAPER, has been developed for
analysing XPS data with resolution and signal-to-noise ratio sufficiently good to differentiate
between lineshapes derived from different conduction band structures; it allows fitting to a
range of possible DOS and JDOS functions, offering a more comprehensive approach than
hitherto available.
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SHAPER involves the iterative minimization of a ‘goodness-of-fit parameter’ defined
as
n 2
pEr . Esr . Ey) = Z (di — O(E;, &1, %‘22, §3,...,61)

i=1 i

whered; is the number of photoelectrons counted at enefgyand n is the number of
experimental pointsy; is an estimate of the standard deviatiordpfand  is the number
of parametersg;, of the model lineshape which has the value;, &1, £, &3, ...,&,) at
energyE;. p is iteratively minimized with respect to parametéys to obtain the most
probable set, but because there may be local minima ftine fitting process must begin in
a region of theu-dimensional parameter space sufficiently close to the absolute minimum
of p; i.e., the parameters must initially be adjusted manually to fairly close to those of the
best-fit model. The parametefs are those determining lineshape itselfgndo, and the
B parameters; see belowd, determining its overall strengthfy determining its position,
and x, ¢ andv determining the background. To avoid wild excursions in the minimization
process, limiting bounds can also be imposed on the variation of particular parameters. In
cases in which several lines are simultaneously fitted, as for multiplet structures such as
those addressed in papers Il and lll, corresponding parameters for different components of
the multiplet can also be constrained to be equal.

(19)

3.2. A numerical implementation of the lineshape model

SHAPER requires a method reliably and quickly calculating) from J(E) and other
parameters using a numerical implementation of equation (B)E) is the key to the
lineshape, but closed form solutions fb¢E) are possible only for very simple forms of
J(E), and then only for smalE. Fortunately equation (6) is readily amenable to numerical
methods, particularly fast Fourier transforms (FFTs), and SHAPER find$ when J(E)

is

(i) specified algebraically;
(ii) obtained by convolution from an algebraic mode(E), together with a value for
EF.

Table 1 gives the functional forms fgr E) programmed as options in SHAPER. (These
were all designed to fit real data, so are often more complicated than required to produce
the sample lineshapes of subsection 3.3 below; the numbering scheme and the ordering
of parametersg; reflect this.) There are two conditions of(E): (i) J(0) = O (see
equation (7); opte= 4 violates this, butv/ (0) « 1 if 81 > B2); (i) J(E) - 0 asE — oo
so that the integrals in equation (6) converge. Both apply for all the values of the parameters
B; permitted in the fitting processpgi—pfs are named according to their effects 6QE);

e.g., for optd= 7, B; is the ‘cut-off position’ ands, the ‘cut-off sharpness’. Other names
can be obviously identified with their corresponding parameters, and are used in SHAPER's
output. As examples, figure 2 showsE) for two different models specified in the caption;

the peak was introduced for optel 8 to represent extrinsic plasmon losses in the lineshape
of 2H-TaS—see paper Il [8]—and thed (E) should properly be referred to as the joint
density of excitations rather than the JDOS.

Table 2 gives the functional forms f@(E) programmed in SHAPER, and one of these
is plotted in figure 3§) for optd = 3 and some typical parameter values for two values of
Er. WhenJ(E) is determined fronD(E), there is a complication becaufd Er) depends
on the parameterg;, that specifyD(E); the slope of/(E) at E = 0 is not independent of
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Table 1. The functional forms used forv(E) in SHAPER. « is dimensionless, and the
other parameters have dimensions of energy except for the sharpness pagynveéch has
dimensions of inverse energy.

Functional form ofJ(E) Description optd

aEexp(—E/B1) A straight line at the origin

which falls away slowly, reaching

its maximum atg; (implemented

as a special case of opte4) 1
o E exp(—E/Ba) + apz exp(—(E — p1)?/2p2) As above but with a Gaussian

peak added at positiofy with

width parametepB, and heightgs 4
oE exp(—E /Ba) + a EBz exp(—(E — B1)2/2p2) As optd= 4 but with E

multiplying the Gaussian to

force it to zero atE = 0 6
2E (1 — tanh(B2(E — p1))) A straight line until reaching

a smooth cut-off a1,

sharpnes$, 7
2E (1 — tanh(B2(E — B1))) + Bs E exp(—(E — B3)%/262) As optd= 7 but with a

Gaussian peak added 8

1?2

J(E)

E
Figure 2. Some examples of the model JDOS function&) used in SHAPER with parameters
as follows:
optd « B B2 Bz Ba PBs
E— 8 10 175 15 — — 0

---- 8 08 175 15 07 01 1

these parameters and thmgannot itself be specified as is the case wh¢BR) is specified
directly (equation (10)). Instead, is retained as a scaling factor fd(E) in cases when
D(E) is used for fitting, and the value obtained cannot be directly comparedewiitbm
fitting using a specific/ (E). For the examples in figure )(Er) =~ 1, so witha = 1, the
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Table 2. The functional forms used fab(E) in SHAPER.

Functional form of D(E) Description optd
exp(—E2In2/p2) A single Gaussian peak of half width

B1 at half maximum, withEy = B2 1
exp(—E2In2/p2) + Bz exp(—(E — Ba)?4In2/p2) A pair of Gaussians of half widthg;

and B, height ratioBs, separatiorg, 2

tanh(B1E) — tanh(B1(E — B2))

5 A ‘top hat’ function with sides of

steepnesg; and with overall widthgs 3

initial slope of J/(0) is ~ 1 close toa; but whenD(Ef) % 1 this is no longer the case,
and the derived/ (E) must be inspected to obtain the asymmetry parameter from the initial
slope.

Even relatively simple model DOSs, like those in figurea)3(give algebraically
complicated JDOSs after applying equation (7), and new models can be introduced only at
considerable cost in programming and execution times. The models have therefore been
kept as flexible as possible, and an expli¢itF) has been used where this can be done
with acceptable realism; the advantages of doing so will be explored in subsection 3.4.

3.3. Some example lineshapes from the SHAPER package

Lineshapes derived from some of the models are illustrated in figures 4-8; each figure shows
the theoretical lineshapB&(E) expected for the JDOS in the inset panel. In each case the
vertical scale forl (E) is arbitrary, and no background has been included.

Figure 4 shows the lineshape for various valuest@f J'(0)) for a linear JDOS that
cuts off exponentially to zero af = +3. It is identical to the DS lineshape for as far in
energy below zero as the JDOS remains linear, and, as for the simplistic DS JDOS, the peak
height is strongly dependent en The asymmetric tail has a shoulder, corresponding to the
JDOS cut-off, atE = —3; this is less marked for lower values @fand could easily be lost
in any inelastic background (not included here) and only be apparent when the lineshape is
fitted computationally. Just perceptible is the movement of the peak maximum to lower KE
asa increases. Figure 5 varies the cut-off energy, and the shoulder shifts accordingly; note
that even thoughy/ (E) for the two highest cut-off positions is identical up Bb= 5, the
extra transitions available at higher energy shift weight to lower KE and cause the observed
peak heights to differ.

Figure 6 superposes a Gaussian peak of specified height, width and pggijoon
J(E) (optd = 8); such a JDOS is unlikely to result from a real DOS, but this form is
essential to include extrinsic excitations other than electron—hole pairs, such as plasmon
losses. The example is exaggerated to demonstrate how pronounced the pégk must
be to give a satellite in the photoemission lineshape. The linggfoe 1 also shows a
weak feature ak = —2 corresponding to a double excitation; such multiple excitations are
automatically incorporated by SHAPER, but are very weak effects.

When SHAPER generateg E) algebraically as a convolution @ (E) (for a particular
EF), the slope of/(E) at E = 0 is not determined by a single parametg) 4s is the case
when J (E) is itself specified, but is derived from those which determing); D(E) and
J(E) must therefore be examined graphically for comparison with other results obtained
using algebraically specified(E)s as discussed above. It is also not possible to invert
the convolution to deriveD(E) from J(E), as many different models for the DOS could
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1

0.6
D(E) [
0.4 [

02 [

(@) oL

J(E)

Figure 3. (a) An example of the model DOS functiod3(E) used by SHAPER, with opte: 3,
1L =2andB, = 3. — and --- -representEr = 1 and 1.5 respectively. bf The
corresponding functiong (E).

produce closely similar JDOSs. Figure 7 uses(&) calculated from a DO (E) which

has Gaussian form centred éh= 0 (optd= 1), with HWHM g; = 6 andEf. (i.e. 82) = 0.

The corresponding/ (E) is linear atE = 0 and smoothly falls away, so the lineshape is

of the DS form close to the peak, falling away to zero at an energy of the order of the
width of the DOS and with no sharp features. The curves show the effect on the lineshape
of varying the height of the Gaussian such that the resulting initial slop&Bj (i.e. «)

varies. Figure 8 shift€r (a parameter that, as will be seen in paper Il, is experimentally
adjustable in intercalated materials), changing the occupation of the conduction band while
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LMY I A A S Sy S SO S B S B S B B SE SN S S M a

I(E)
(arb units)

Figure 4. The effect on the lineshape, generated using eptd, of changing the asymmetry
parameterr, determined by the slope of the JDOSE) at the origin (see the inset)E is
the kinetic energy shift from the ‘true’ line enerdsp, and for these curves the cut-off energy
B1 = 3, the cut-off sharpnes, = 1.5, and« is 0.1 (——), 0.3¢{---)or0.5¢----- ).

1.6 et
14} SN
12 e Y

I(E) osf \
(arb units) 0.6F s \ \ \

0.4F ‘/‘ \ "\__ 3 /
02} £ \ 2

Figure 5. The effect on the lineshape, generated using ep#] of changing the energy of the
cut-off in the JDOS (shown in the inset). Hexe= 0.40 and the cut-off sharpnegs = 1.50
for all the curves, and the cut-off energies @&ie= 1.00 (——), 3.0¢---)and 5.0 (----- ).

the DOS remains fixed; note how the lineshape changes markedly even for small shifts in
Er.

These calculated lineshapes show several clear trends: (i) increasing the slboe) of
at E = 0 increases the asymmetry close to the peak; (ii) sharp featusg€inappear in the



Lineshapes in XPS from metals | 1431

1 I T I I
2 '\
A 14
) n s ; i
.l /|
! i) i I\
I(E) st ‘; . j
(arb units) | d \ i
0§ 1 2 3 ) 3 py
E Y
v L
Pttt
PR S So | H PR R U | i i
-5 -4 -3 -2 -1 0 1
E

Figure 6. The effect on the lineshape of introducing an additional peak structure in the effective
JDOS as for optd= 8. Herea = 0.40, the cut-off sharpnes8, = 1.50, the cut-off energy

B1 = 3.0, the peak width3, = 0.1 and the peak-to-slope ratgy = 2.0 for all the curves; the
peak positions ar@gz = 1.00 (——), 2.0¢---)and 3.0 (----- ).

1.4
1.2

0.8}
I(E) 06k

(arb units) 0.4}

0.2

Figure 7. Here J(E) is calculated from a DO®(E) which has Gaussian form centred on
E = 0 (optd= 1), with HWHM B1 = 6 and Er (i.e. 82) = 0. The curves show the effect of
varying the height of the Gaussian such thiat0) (i.e. ) varies:a« = 0.1 (——), 0.3 ¢ - - -)

lineshape,l (E), but considerably smoothed—peaksJE), unless very narrow, appear
as shoulders in the lineshape; (iii) th&€E) functions (and the corresponding lineshapes)
calculated from explicitD(E) functions are generally very similar to those which can be
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I(E)
(arb units)

Figure 8. As for figure 7, but her& r is varied whilex is fixed at 0.40 by fixing the Gaussian
peak height.Ey = 0.0 (—), 1.0¢---)and 2.0 (----- ). As Er increases, the DOS
falls because of the Gaussian profile of the DOS, and so therefore do the initial sldpé of
and the effective asymmetry.

specified directly in SHAPER. A comparison of thi¢E) models generated in figures 7 and

8 with the explicit, arbitrary/ (E) models of figure 4—6 reveals that the explicit models do
indeed successfully simulate thig€E) derived from a variety of differenD(E) functions.

Figures 7 and 8 should therefore not be viewed as a wholly distinct method of calculating
the lineshapes, but rather as an extension of the previous set, demonstrating how the changes
in J(E) might be related to changes I(E).

3.4. Some example fits from the SHAPER package

SHAPER's reliability was tested using data artificially generated with specified lineshape
parameters with random noise added. SHAPER'’s output parameters should of course be the
same, with appropriate error bounds, as those used to generate the data, and not be overly
sensitive to the initial estimate of parameters. The error bounds should also correspond to
those observed by ‘Monte Carlo simulations’ [20], which indicate how accurately the final
parameter set has been determined. Further, when attempting to fit data generated from one
algebraic form of/(E) with a model lineshape derived from a different), the model
should be rejected as unsuitable unless f€) returned by the fit is, over a wide range
of E, almost identical to that used for generating the lineshape.

First, two lineshapes (lines A and B, shown in figure 9) were generated using respectively
optd= 7 (table 1) as in figures 4 and 5, and optdl (table 2) as in figures 7 and 8. A
and B were then used to produce 20 ‘real’ spectra (datasets A and B) by adding random
numbers with a Gaussian distribution (mean, zero; standard deviatibdQ+ N, where
N is the number of counts at the relevant energy in the original lineshape) to simulate
noise. Constant backgrounds were included to allow noisy ‘data’ to dip below the base
line of the peak without becoming negative. Dataséwas generated from lineshape A
with ‘worse’ noise of standard deviation900+ N. These datasets were then fitted with a
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I(E)

(arb units)

I(E)
(arb units)

(6)

Figure 9. The original lineshapes from which the test data were derivajlLifie A is based
on a linearJ (E) with a cut-off atE = —3.0, a cut-off sharpness of 3.0, and with= 0.20. ()
Line B is based on a Gaussidn E) with half width 5.0 andEr offset by 1 energy unit from
the peak maximum-(- - -); this produces @ (E) with an initial slope (i.e«) of 0.5.

variety of lineshapes based on several different modeld {&) and D(E), some of them
using different algebraic forms from those used for the original lines, producing in each
case 20 results for the various fitting parameters involved; these 20 results thus provided
estimates of the standard deviations of the fitting parameters as well as their means, and
thus a measure of the reliability of the fitting process.

An example of fitting a line from dataset A usingJ4E) with the same mathematical
form as used to generate line A, i.e. optd7, is shown in table 3, which lists the original
values used to generate line A, the starting estimates and bounds for the fitting parameters
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and the final values produced from SHAPER. The initial estimates of the parameters are very
different from the original values, but the fitted parameters are very close to the original set.
The reliability of such a fit is characterized by examining the results for fits to all 20 lines of
dataset A which are summarized in table 4, which shows the means and standard deviations
of the 20 p-values obtained, and of the 20 results returnedefoB; and ., together with

the original parameters. The quality of fit is also represented graphically in figure 10 by
comparing the original/ (E) with an average of the 20(E)s returned from the output
parameters from SHAPER. The dashed lines indicatme standard deviation (obtained
from the 20 values off (E) at any particular point), and the dotted lines the most extreme
J(E) obtained.« (the slope of/(E) at the origin) and the cut-off energy are determined
very precisely, though the sharpness of the cut-off is less precisely retrieved bdc@)se

is less sensitive to this parameter. The mean fitkéH) coincides with the original.

0.5
0.4 :
0.3 :
J(E)

0.2

0.1

Figure 10. Results of fits of dataset A with a modé(E) of the same form as used to generate
line A (optd= 7). The original {—) and the mean of the fitted (—)(E)s coincide almost
exactly and can barely be distinguished in the figure; the spread in thefitE&s is represented
by the dashed lines ¢ - -), and the extreme curves by the dotted lines (- -).

The anticipated distributiony?) of p is characterized by = N — u (wherey is the
number of free parameters in the fit (8 for optd = 7) and N (= 500) is the number
of data points) and is approximately normal for largewith meanv and variance 2,
suggesting an expectation value of 4931/+/20 for p for each fit; the fit corresponding
to figure 10 gives 489 + 28.8/+/20, well within the expected range is very sensitive
to the weighing factorg?, being inversely proportional to any overall error, sofwere
consistently overestimated by 5%, the expectation valug @fould be reduced by 5%,
from about 490 to about 470. The reliability with whighcan be used as a goodness-of-fit
parameter thus depends on accurate estimates of the noise level. Because the artificially
generated data have a specified noise lgvaliheres closely to the expectgfldistribution,
but such precision cannot be expected when dealing with experimental data where the noise
level is not so well determined. Several different initial estimates of the parameters were
also made; the results are not shown here, but SHAPER returned essentially the same
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Table 3. The parameters used to generate the artificial data, line A, using-epfd(first
column), and the values returned by SHAPER after fitting the artificial data with a lineshape of
the same form as optd 7 (final column). The middle three columns show the values input to
SHAPER as starting points for the fitting process, and the upper and lower bounds constraining
the process against wild excursions. Several decimal places are shown for the final values to
emphasize that, though very close, they are not exactly the same as the originals.

Original Lower Upper Starting Final

value bound bound value value
Background level 100 0 8000 1000 101.0
Amplitude (a simple scaling factor) 300 0 12000 300 297.8
Position Eop) 0.00 —1.000 1.000 0.100 —0.001
Lorentzian width £~1) 0.06 0.01 0.12 0.02 0.054
Gaussian widthd) 0.30 0.10 0.60 0.50 0.307
o 0.20 0.05 0.60 0.30 0.199
Cut-off position §1) 3.00 1.0 6.0 2.0 2.976
Cut-off sharpnessfp) 3.00 0.5 5.0 1.0 3.027

Table 4. A summary of the original values for various relevant lineshape parameters used to
generate lines A and B, and the mean values and standard deviations returned by SHAPER
from fitting the corresponding 20 noisy datasets; also shown are the goodness-of-fit parameters
p for each fitting process. The fits are represented graphically in figures 10-12. The figures in
brackets are the values returned from fitting the noisier datasbaged on line A.

Original Mean Standard
Parameter value fitted value deviation
Figure 10 0 — 489.7 28.8
Dataset A (A) optd 7 7 —
o 0.200 0.200 (0.201) 0.001 (0.003)
Cut-off (81) 3.000 2.995 (3.001) 0.015 (0.035)
Cut-off (82) sharpness  3.000 2.979 (3.072) 0.292 (0.547)
Figure 11 0 — 2168.2 96.3
Dataset A optd 7 6 —
o 0.200 0.263 0.002
Figure 12 0 — 495.4 40.1
Dataset B optd 1 1 —
o 0.500 0.531 0.114
Peak half width g1) 5.000 4.937 0.253
Er(B2) 1.000 0.857 0.573

parameter set in each case.

Table 4 also summarizes the results of fitting datasetith optd= 7, and it can be seen
thatw, 1 andg, are recovered satisfactorily, though, as would be expected, with somewhat
larger standard deviations; this is particularly noticeableggrto which the lineshape is

least sensitive. The graphical representation corresponding to figure 10 is not shown, but
has exactly the same form but with somewhat larger spreads as would be expected. The
results of fitting dataset A using(E) = Ee £/#+ (optd = 6 with 83 = 0) as a model

fit are shown in table 4 and figure 11, demonstrating the poor fit when the nigds!

cannot reproduce the original JDOS. Despite the high valueg, dhe results are quite
self-consistent, all thd (E) curves lying in a narrow band and the fitted parameters having
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low variances; note also that the fittddFE) is quite close to the original nedt = 0, which
dominates the lineshape, but such a fit, with= 2168 (more than four times the expected
value), would properly be rejected.

0.5 L B B
0.4 .
03 F P ==
J(E) -

02| -

0.1 F -

Figure 11. Results of fits of dataset A with an inappropriate modéE) (~ E exp(—E)) of
different form from that used to generate line A (optd7). The originalJ(E) (—) is not
well fitted by theJ(E) (——) derived from SHAPER.

Table 4 and figure 12 similarly summarize the results of fitting dataset B using the
same model for fitting as for generating the data (optd, a GaussiamD(E), with Er
displaced from the centre of the peak), with all the parameters free to vary. The mean and
standard deviation op are as expected, but, while the peak width is consistently close to
the original, Er and o are wildly scattered and raise doubts about the overall validity of
the fits. Figure 12 confirms this, showing that whereas the ni¢an matches the original
very closely (hence the expectpévalues), the fitted (E) fluctuates widely. The problem
here is one of uniqueness—an increase in the overall height of the DOS, accompanied by an
appropriate shift off away from the peak, can leav@(Er) unchanged with little effect
at the lower end of/ (E) where the fitting is most effective; if differend(E) functions
produce the same (or very similay)(E) functions, SHAPER cannot readily distinguish
them. So obtaining-values close to those statistically expected is not in itself confirmation
that a good, physically reasonable fit has been achieved when the fitting is carried out using
convolution of D(E) rather than a directly modelled(E). Overall, whereas dataset A is
fitted well by the model JDOS used to generate it and not by others, dataset B is much less
sensitive to the model DOS; it can also be concluded that the sharper features of the JDOS
are more reliably predicted with SHAPER, as might be expected.

4. Conclusion

Given the ‘correct’ model forJ(E) SHAPER is capable of returning a best-fit set of
parameters that is accurate and reliable, and independent of the starting parameter estimates.
With the ‘wrong’ model forJ (E), SHAPER returns high (poor) values for however, since
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Figure 12. Results of fits to dataset B using optd 1, the same GaussiaR(E) as used to
generate the noisy data. The originalH-) and mean (——) of the fitted forms @ (E) are in

fair but not close agreement over the range plotted, with spreads in the fitted results represented
by the dashed and dotted lines as for figures 10 anda).l The vertical lines represent the
original value ofEr (—), and the mean (——) and standard deviations {-) of the fitted

values. The fitted/ (E)s (——) however agree quite accurately with ther) (——) derived

from the original D(E) (b).

the lineshape depends on the values/¢E) rather than its algebraic form, the shape of
J(E) returned must be examined, rather than just the output parameters, since different
algebraic representations of the JDOS can, with suitable parameter values, give the same
shape ta/ (E). The determination oD (E) is much less reliable than that #f E') because a

range of D(E) models can give very similaf(E) functions; the generation of the lineshape
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from D(E) is helpful only when most of the parameters are fixed, for example when the
shape ofD(E) is known andEr is required. With these limitations clearly in mind, and

the fact that the process must be interactive, SHAPER can be applied to data obtained from
real, and complicated, physical systems [8].
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